Basic Maths Revision

DECIMALS

3 - Adding \& Subtracting
3 - Multiplying
4 - Dividing
5 - Converting to Fractions

FRACTIONS

6 - Adding and subtracting same type of fraction (same denominator)
6 - Adding and subtracting (different denominators)
7 - Multiplying
7 - Dividing

PERCENTAGES

8 - Calculating percentage change
8 - Increasing a number by a set percentage
8 - Decrease a number by a set percentage

RATIOS

9 - Ratios and examples

AREAS

10 - Definitions

10 - Squares \& Rectangles
10 - Triangles
12 - Circles

DECIMALS - Adding and subtracting

* Write down the numbers, one under the other, with the decimal points line up
* Put in the zeros so the numbers have the same length
* Then add normally, remembering to put the decimal point in the answer

Example: 1.452+1.3

Line the decimals up	1	. 452
	+	. 3
Put in the zeros so numbers have same length	1	. 452
	+ 1	. 300
Add	1	. 452
	+ 1	. 300
	2	. 752

DECIMALS - Multiplying

* Multiply normally,, ignoring decimal points
* Then put in the decimal point in the answer - it will have as many decimal places as the two original numbers combined

Example: 0.03x1.1
start with: $\quad 0.03 \times 1.1$
multiply without decimal points: $3 \times 11=33$

0.03 has 2 decimal places

 1.1 has 1 decimal placesso the answer has $\mathbf{3}$ decimal places: 0.03

DECIMALS - Dividing

* Use long division (ignoring decimal places)
* Then put in the decimal point in the same spot as the dividend (the number being divided)

Example: 9.1 divided by 7

Ignore the decimal point and use long division
13
7) 91

7
21
$\underline{21}$
0

Put the decimal point in the answer directly above the decimal point in the dividend
1.3

7) 9.1
The answer is $\mathbf{1 . 3}$

DECIMALS - converting to fractions

* Write down the decimal divided by 1
* multiply both top and bottom by 10 for every number after decimal point (for example, if there are 2 numbers after the decimal, then use 100, if there are 3 numbers, then use 1000 etc)

Example: Convert 0.75 to a fraction
Write down:

$$
\frac{0.75}{1}
$$

Multiply both top and bottom by 100 (because there are 2 digits after the decimal place)
(see how it turns top number into a whole number?)
x 100
Simplify the fraction:

Answer = 3/4

FRACTIONS - Adding and subtracting same type of fraction (same denominator)

* Make sure the bottom numbers are the same (the denominators)
* Add top numbers together (the numerators) and put the answer of the same denominator
* simplify the fraction if needed

Example:

$$
\frac{1}{4}+\frac{1}{4}
$$

Add top numbers and put answer over same denominator

$$
\frac{1}{4}+\frac{1}{4}=\frac{1+1}{4}=\frac{2}{4}
$$

Simplify fraction:

$$
\frac{2}{4}=\frac{1}{2}
$$

FRACTIONS - Adding and subtracting (different denominators)

* Make sure the bottom numbers are the same (the denominators) by finding the common denominator
* Add top numbers together (the numerators) and put the answer of the same denominator
* simplify the fraction if needed

Example

$$
\frac{1}{3}+\frac{1}{6}
$$

As the $\mathbf{3}$ is half of $\mathbf{6}$, we multiply the top and bottom of the first fraction by $\mathbf{2}$ to find the common denominator

$$
\frac{1 \times 2=2}{3 \times 2=6}=\frac{2}{6}
$$

Now we can add the two fractions together

$$
\frac{2}{6}+\frac{1}{6}=\frac{2+1}{6}=\frac{3}{6}
$$

Finally, we can simplify the fraction

$$
\frac{3}{6}=\frac{1}{2}
$$

FRACTIONS - multiplying

* multiply the top numbers
* multiply the bottom numbers
* simplify fraction if needed

Example: $\quad \frac{1}{2} \times \frac{2}{5}=\frac{1 \times 2}{2 \times 5}=\frac{2}{10}$
Simplify $\quad \frac{2}{10}=\frac{1}{5}$

FRACTIONS - dividing

* Turn the second fraction (the one you want to divide by) upside-down
* Multiply the first fraction by this new fraction
* Simplify the fraction if needed

Example:

$$
\frac{1}{2} \div \frac{1}{6}
$$

Turn second fraction upside-down

$$
\frac{1}{6}=\frac{6}{1}
$$

Multiply first fraction by this new fraction $\frac{1}{2} \times \frac{6}{1}=\frac{1 \times 6}{2 \times 1}=\frac{6}{2}$

Simplify the fraction

$$
\frac{6}{2}=3
$$

PERCENTAGE - calculating percentage change

* divide the amount of increase by the initial value and multiply by 100

Example:
Longsands School had 20 teachers in 2008. The next year, there were 12 teachers. What is the percentage change from 2008 to 2009
$20-12=8$
$8 \div 20=0.4$
$0.4 \times 100=40$
Therefore the percentage change is 40%

PERCENTAGE - How to increase a number by a set percentage

* convert the percentage to a decimal
* multiply the original number by the resulting decimal (this is the actual increase)
* add the result to original number

Example: Increase £34 by 20\%
$20 \div 100=0.2 \quad 34 \times 0.2=6.8 \quad 6.8+34=40.8=£ 40.80$

PERCENTAGE - How to decrease a number by a set percentage

* convert the percentage to a decimal
* multiply the original number by the resulting decimal (this is the actual decrease)
* subtract the result from original number

Example: Decrease $£ 120$ by 3\%
$3 \div 100=0.03 \quad 120 \times 0.2=3.6 \quad 120-3.6=116.4=£ 116.40$

RATIOS

* If you are making blackcurrant squash and you mix use 4 parts of water for every part of juice, you are using a ratio of 4:1
* If you are making rice and you use two teacups of water for every teacup of rice you are using a ratio of $\mathbf{2 : 1}$

Breakdown a figure into its Ratio

* Add ratios together
* Divide number by the result
* Multiply this new figure by the individual ratio figures

Example 1: Split $£ 24$ into the ratio of 1:5
Add ratio $1+5=6$
Divide 24 by $6 \quad 24 \div 6=4$
Multiply result by both individual ratio figures $4 \times \mathbf{1}=4$ and $4 \times 5=20$
Answer is $£ 4$ and $£ 24$
Example 2: Split $£ 120$ in the ratio of 2:3:5
Add ratio $2+3+5=10$
Divide 120 by $10 \quad 120 \div 10=12$
Multiply result by both individual ratio figures $12 \times 2=24,12 \times 3=36$ and $12 \times 5=60$
Answer is $£ 24, ~ £ 36$ and $£ 60$

AREAS

Definitions:
$\left.\left.\begin{array}{ll}\text { Polygons } & - \text { a closed shape bounded by only straight lines } \\ \text { Triangles } \quad-\text { a three sided polygon }\end{array}\right] \begin{array}{rl}\text { Parallelograms }- \text { a } 4 \text { sided figure formed by two pairs of parallel lines. } \\ \text { Opposite sides are equal in length and opposite angles have } \\ \text { equal measure }\end{array}\right]$

The area of a polygon is the number of square units inside that polygon

* SQUARES and RECTANGLES

To calculate the area (a) of a square or a rectangle, we multiply the height (h) by the width or base (b) so the formula is $\mathrm{a}=\mathrm{h} \times \mathrm{b}$
Example:
$\mathrm{h}=10$ and $\mathrm{b}=50$ so the area is $\quad 10 \mathrm{~cm}$
$10 \times 50=500 \mathrm{~cm}^{2}$

* TRIANGLES

To find the area of a triangle, multiply the base (b) by the height (h), and then divide by 2. The division by 2 comes from the fact that a parallelogram can be divided into 2 triangles. For example, in the diagram below, the area of each triangle is equal to one-half the area of the parallelogram.

Since the area of a parallelogram is $\mathrm{a}=\mathrm{hx} \mathrm{b}$ as shown above for squares and rectangles, the area of a triangle must be 1 half of the area of a parallelogram. Therefore, the formula for the area of a triangle must be: $\mathrm{a}=1 / 2 \mathrm{xh} \times \mathrm{b}$

* Example 1: Acute Triangle

Using our formula $\mathrm{a}=1 / 2 \mathrm{xh} \mathrm{xb}$
the area must be

$$
\mathrm{a}=1 / 2 \times 4 \times 15=1 / 2 \times 60=30 \mathrm{in}^{2}
$$

therefore the area is $30 \mathrm{in}^{2}$

* Example 2: Right Angle Triangle

Using our formula $\mathrm{a}=1 / 2 \mathrm{xh} \times \mathrm{b}$
the area must be $\quad a=1 / 2 \times 9 \times 6=1 / 2 \times 54=27 \mathrm{~cm}^{2}$
therefore the area is $27 \mathrm{~cm}^{2}$

* Example 3: Obtuse Triangle

Using our formula $\mathrm{a}=1 / 2 \mathrm{xh} \mathrm{xb}$
the area must be

$$
a=1 / 2 \times 8 \times 5=1 / 2 \times 40=20 \mathrm{~cm}^{2}
$$

therefore the area is $20 \mathrm{in}^{2}$

* CIRCLES

Definitions:
Circumference - the distance around the circle
Diameter - the distance across a circle through its centre
Radius - half of the diameter
$\boldsymbol{\pi} \mathbf{(P i)} \quad$ - circumference divided by diameter $=3.14$ to 2 decimal places

The area of a circle is the number of square units inside that circle. If each square in the circle to the left has an area of $1 \mathrm{~cm}^{2}$, you could count the total number of squares to get the area of this circle. Therefore, if there were a total of 28.26 squares, the area of this circle would be $28.26 \mathrm{~cm}^{2}$. However, it is easier to use the following formula:

$$
\mathrm{a}=\pi \mathrm{xr} \mathrm{r}^{2} \text { or as is more commonly known, } \mathrm{a}=\pi \mathrm{r}^{2}
$$

* Example 1: finding the area with a known radius

using the above formula $\mathrm{a}=\pi r^{2}$, and filling in the known values,

$$
\mathrm{a}=3.14 \times 3^{2}=3.14 \times(3 \times 3)=3.14 \times 9=28.26 \mathrm{~cm}^{2}
$$

therefore, the area is $28.26 \mathrm{~cm}^{2}$

* Example 2: finding the area with a known diameter

In order to use our above formula $\mathrm{a}=\pi r^{2}$, we first have to find the radius. As the radius is half the diameter, we are able to work out the area by filling in the known values,

$$
a=3.14 \times(8 / 2)^{2}=3.14 \times 4^{2}=3.14 \times(4 \times 4)=3.14 \times 16=50.24 \mathrm{~cm}^{2}
$$

therefore, the area is $50.24 \mathrm{~cm}^{2}$

